Department of Applied Physics and Materials Science - Applied Physics

Faculty

Harry A. Atwater, Jr.

Otis Booth Leadership Chair, Division of Engineering and Applied Science; Howard Hughes Professor of Applied Physics and Materials Science; Director, Liquid Sunlight Alliance

Professor Atwater's research focuses on quantum and nanophotonics, metamaterials and metasurfaces, artificial photosynthesis, two-dimensional materials, nano- and micro-structured photovoltaics, space solar power and plasmonics.

Webpage
Paul M. Bellan

Professor of Applied Physics

Professor Bellan's research area is plasma physics with applications to fusion energy, solar physics, astrophysics, high altitude atmospheric phenomena, and the rings of Saturn. The research is mainly experimental but there is also substantial related theoretical effort. The research involves two major groups:(1) high power fast pulsed plasmas that simulate solar coronal loops, astrophysical jets, and have fusion applications and (2) water ice dusty plasmas relevant to noctilucent clouds and Saturn's rings.

Webpage
Marco Bernardi

Professor of Applied Physics, Physics and Materials Science

Marco Bernardi's research focuses on theoretical and computational materials physics. His group develops new first-principles methods to investigate electron transport, ultrafast dynamics and light-matter interactions in materials. Applications of this research include electronics, optoelectronics, ultrafast spectroscopy, energy and quantum technologies.

Webpage
Chiara Daraio

G. Bradford Jones Professor of Mechanical Engineering and Applied Physics; Investigator, Heritage Medical Research Institute

Prof. Daraio’s research focuses on engineering new materials with advanced mechanical and sensing properties, for application in robotics, medical devices, and vibration absorption. Her group developed new materials and methods for acoustic imaging and thermal sensing in medicine and health monitoring. Recently, her group began exploring new materials from engineered living systems, creating plant-based biological matrix composites with new functionalities.

Webpage
Paul E. Dimotakis

John K. Northrop Professor of Aeronautics and Professor of Applied Physics

Professor Dimotakis focuses on experimental and computational research on turbulent mixing and chemical reactions in subsonic and supersonic free-shear flows; hypersonic propulsion; mixing and the geometry of surfaces and interfaces in turbulence; scalar dispersion in turbulent flows; and related areas.

Space-Related Research

Recent space-related research has been in collaboration with JPL on remote sensing of the atmosphere from space and on the technical feasibility of an asteroid-return mission. Other space-related research has been on high-speed/hypersonic endoatmospheric flight and propulsion, and parachute dynamics for entry, descent, and landing, as well as physics and issues related to a Europa melt-probe to descend to the liquid-water layer.

Webpage
Michael Elowitz

Professor of Biology and Bioengineering; Investigator, Howard Hughes Medical Institute

Professor Elowitz’s research focuses on creating and analyzing biological “circuits" of interacting genes and proteins. By programming new functions in living cells, his group seeks to uncover fundamental principles of circuit design and develop next generation cell and gene therapies. Recent work focuses on circuits that provide key functions required for multicellularity, including computation, communication, and memory. 

Webpage
Andrei Faraon

William L. Valentine Professor of Applied Physics and Electrical Engineering

Faraon's research interests are in solid state quantum optics and nano-photonics. Applications include quantum information processing, on-chip optical signal processing at ultra-low power levels, energy efficient sensors, bio-photonics.

Webpage
Brent Fultz

Barbara and Stanley R. Rawn, Jr., Professor of Materials Science and Applied Physics

Professor Fultz focuses on materials physics and materials chemistry, presently with two emphases. One is on the origin of entropy, as studied by neutron scattering and computation. This has expanded to other thermophysical properties. The second is on new materials for energy storage, especially H-storage materials.

Webpage
William A. Goddard, III

Charles and Mary Ferkel Professor of Chemistry, Materials Science, and Applied Physics

Goddard has been a pioneer in developing methods for quantum mechanics (QM), force fields (FF), reactive dynamics (ReaxFF RD), electron dynamics (eFF), molecular dynamics (MD), and Monte Carlo (MC) predictions on chemical, catalytic, and biochemical materials systems.

Webpage
Alireza Marandi

Assistant Professor of Electrical Engineering and Applied Physics

Professor Marandi’s research is focused on fundamental technological developments in Nonlinear Photonics through exploring the frontiers of ultrafast optics, optical frequency combs, quantum optics, optical information processing, mid-infrared photonics, and laser spectroscopy. His team works on realization of novel nonlinear photonic devices and systems for applications ranging from sensing to unconventional computing and information processing, as well as advancing the theoretical understanding of them.

Webpage
Austin Minnich

Professor of Mechanical Engineering and Applied Physics

Professor Minnich's research focuses on advancing microwave and millimeter-wave technology used in radio astronomy, quantum information science, and other applications. Current topics include investigation of electronic noise and nanofabrication processes for ultralow noise transistor amplifiers and quantum simulation using superconducting qubit quantum computers.

Webpage
Mohammad Mirhosseini

Assistant Professor of Electrical Engineering and Applied Physics

Mirhosseini's research is on the experimental aspects of quantum engineering. His current research focuses on developing and combining superconducting circuits with chip-based phononic and photonic devices at milikelvin temperatures. Long term research goal is to realize interfaces between circuit quantum electrodynamics and quantum optics for applications in quantum computing, communication, and sensing.

Webpage
Stevan Nadj-Perge

Professor of Applied Physics and Materials Science

Stevan Nadj-Perge is interested in development of mesoscopic devices for applications in quantum information processing. Such devices also provide a playground for exploring exotic electronic states at (sub)-nano length scales. In his research, he is using scanning tunneling microscopy and electrical transport measurement techniques at cryogenic temperatures.

Webpage
Oskar J. Painter

John G Braun Professor of Applied Physics and Physics

Professor Oskar Painter's research interests are in nanophotonics, quantum optics, and optomechanics for applications in precision measurement and quantum information science.

Webpage
Rob Phillips

Fred and Nancy Morris Professor of Biophysics, Biology, and Physics

Professor Phillips focuses on physical biology of the cell: models of transcription and active matter, physical genomes, and biophysical approaches to evolution.

Webpage
Michael L. Roukes

Frank J. Roshek Professor of Physics, Applied Physics, and Bioengineering

Professor Roukes's research focuses on nanobiotechnology, nanotechnology, nanoscale physics, nanoscale and molecular mechanics.

Webpage
Axel Scherer

Bernard Neches Professor of Electrical Engineering, Applied Physics and Physics; Merkin Institute Professor

Professor Scherer's group focuses on the application of microfabrication to integrated microsystems. Recently, his group has specialized on developing sensors and diagnostic tools that can be used for low-cost point-of-care disease detection as well as precision health monitoring.

Professor Scherer has pioneered microcavity lasers and filters, and now his group works on integration of microfluidic chips with electronic, photonic and magnetic sensors. His group has also developed silicon nanophotonics and surface plasmon enhanced light emitting diodes, and has perfected the fabrication and characterization of ultra-small structures by lithography and electron microscopy.

Presently, his group works on integration of microfluidic chips with electronic, photonic and magnetic sensors. His group has also developed silicon nanophotonics and surface plasmon enhanced light emitting diodes, and has perfected the fabrication and characterization of ultra-small structures by lithography and electron microscopy.

Webpage
Keith C. Schwab

Professor of Applied Physics

Professor Schwab's current focus is the development of Josephson junctions for superfluid helium-4 with the goal to build quantum devices such as interferometers and quantum bits from this material.  What makes this now possible are the advances in 2d nanometerials with nanometer pores.

Webpage
Sandra M. Troian

Professor of Applied Physics, Aeronautics, and Mechanical Engineering

The Laboratory of Interfacial and Small Scale Transport {LIS2T} in the Department of Applied Physics and Materials Science at the California Institute of Technology specializes in both fundamental analysis and engineering design of micro/nanoscale fluidic systems. Of particular interest are small scale systems  dominated by large surface forces due to patterned capillary, van der Waals, Maxwell, thermocapillary and Marangoni fields. Theoretical analysis, numerical simulations (both continuum and molecular scale) and experimentation are all used to develop fundamental physical insight as well as robust design principles for application driven projects. Group focus is on formation, propagation, stability, coupling and control of nonlinear wave phenomena at the micro/nanoscale which induces rapid transport of mass, momentum and heat at moving interfaces. Systems of current theoretical interest include cusp formation in thermally and electrically driven thin films for super anti-reflecting coatings and space micropropulsion devices; nanofluidic phenomena involving Kapitza thermal jumps, layering transitions and thermal rectification in nanoscale devices; spatio-temporal parametric resonance and array formations in thin polymeric films exposed to large thermocapillary and Maxwell patterned fields; Lyapunov, modal and transient growth stability analyses of non-normal systems at zero Reynolds number; capillary and field enhanced propellant management systems for space micropropulsion applications; and solution of inverse problems for 3D lithographic patterning of nanofilms. Systems of current experimental interest include non-contact lithography of 3D micro-optical structures by patterned external fields; Marangoni wave phenomena and fractal wavefronts in biophysical systems; influence of layering transitions on slip behavior in nanoscale films; and optical wave propagation in structured polymeric waveguides.

Webpage
Kerry J. Vahala

Ted and Ginger Jenkins Professor of Information Science and Technology and Applied Physics; Executive Officer for Applied Physics and Materials Science

Kerry Vahala has pioneered nonlinear optics in high-Q optical micro resonators. His research group has launched many of the areas of study in this field and invented optical resonators that hold the record for highest optical Q on a semiconductor chip.  Vahala has applied these devices to a wide range of nonlinear phenomena and applications. This includes the first demonstration of parametric oscillation and cascaded four-wave mixing in a micro cavity - the central regeneration mechanisms for frequency micro combs; electro-optical frequency division - used in the most stable commercial K-band oscillators;  and the first observation of dynamic back action in cavity optomechanical systems. His micro-resonator devices are used at the National Institute of Standards and Technology (NIST) in chip-based optical clocks and frequency synthesizers. They have also been used at the Keck II observatory in Hawaii as miniature astrocombs in the search for exoplanets. Vahala's current research is focused on the application of high-Q optical micro resonators to miniature precision metrology systems as well as monolithic optical gyroscopes. Professor Vahala was also involved in the early effort to develop quantum-well lasers for optical communications. That work formed the basis for nearly all of today’s high-speed semiconductor laser design for lightwave high-speed telecommunications, particularly in the metropolitan and local-area arena.

Webpage
Amnon Yariv

Martin and Eileen Summerfield Professor of Applied Physics and Electrical Engineering

Professor Amnon Yariv's research focuses on the theoretical and technological underpinning of optical communication. Present projects include: new types of semiconductor lasers, optical phase-lock systems and coherent photonics, hybrid Si/III-V devices for lasers, detectors and modulation, "Slow" light propagation in artificial periodic dielectric waveguides.

Webpage


Emeriti

James P. Eisenstein

Frank J. Roshek Professor of Physics and Applied Physics, Emeritus

Professor Eisenstein focuses on experimental condensed-matter physics, particularly strongly correlated electrons in semiconductor heterostructures at low temperatures and high magnetic fields.

Webpage
David L. Goodstein

Frank J. Gilloon Distinguished Teaching and Service Professor, Emeritus; Professor of Physics and Applied Physics, Emeritus

Professor Goodstein focuses on phases and phase transitions in two and three dimensional matter, superfluidity, science education, and scientific ethics.

Webpage
Wolfgang Knauss

Theodore von Karman Professor of Aeronautics and Applied Mechanics, Emeritus

Webpage
Marc-Aurele Nicolet

Professor Nicolet focuses on solid-state device technology: thin-film processes and surface layer phenomena.

Webpage